Parallel evaluation of general vector-arithmetic trees

András Leitereg - Eötvös Loránd University

Dániel Berényi - Wigner Research Centre for Physics

Overview

Motivation

- Category theory
- Implementation
- Conclusion

The problem

Scientists: field knowledge and large scale computational needs Programmers: experience in parallel programming and optimization

The solution

Objective

Focusing on linear algebra applications
 Only CPU threads
 Choose execution strategy (sequential or parallel) based on cost estimation

Workflow

- 1. Expression construction
- 2. Type checking
- 3. Cost estimation
- 4. Code generation
- 5. Building and loading evaluator function

Functional approach

Natural representation of calculations
Easy to optimize

Theoretically proven equivalences

Less room for user errors
Easy to check correctness
Describes the intention much better than a low level representation

Мар

Zip

Category theory

- Formalizes relations between algebraic structures
- Objects and morphisms (arrows)
- Identity morphism for every object
- Morphisms can be composed associatively

Functor

- Mapping between categories
- Mapping of morphisms (fmap) preserves
- Identity: $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$
- Composition: $F(g \circ f) = F(g) \circ F(f)$

Expression trees

- We represent the operations in an expression tree with types,
- so we can use results from category theory to work with the abstract trees.
- We have Scalar, Variable, +, ×, Function, Application, Map, Reduce and Zip nodes.

Recursive tree processing

An arbitrary expression tree can be evaluated by recursively:

applying the evaluator function to each child of the current node through an fmap, and evaluating the current node using specific logic of the represented operation.

3: int

The result of the evaluation must be the same type for any tree.

5: int

Catamorphism

A general concept from category theory.
Formalizes the previous process for arbitrary tree representations and transformations.
Algebra: the collection of "operation specific logics".

Carrier type: the type of the transformation result.

cata(alg) = alg • fmap(cata alg) • unfix

Implementation

 The library is implemented in standard C++.
 We built upon Eric Niebler's sample <u>F-algebra</u> <u>implementation</u>

The type of the expression tree nodes is expressed with boost::variant, and the algebras are boost::static_visitor-s.

Performance testing

Matrix-vector multiplication (16 rows, 10⁷ cols) 5 different execution strategies:

- ► Sequential
- Parallelizing only one of the map, reduce and zip
- Parallelizing all three

Two platforms:

- Laptop with 4 threads and 8GB memory
- HPC cluster with 8 threads and 32GB memory

Results

Conclusion

The implemented library successfully demonstrates that the functional approach is feasible

Selective parallelization can be faster, than blindly parallelizing everything

Easy to select parallelization level

Further plans

Deduce memory allocations automatically from the expression tree ▶ Use category theory to optimize e.g. Fmap: $fmap(g) \circ fmap(f) = fmap(g \circ f)$ Catafusion: $cata(alg2) \circ cata(alg1) = cata(alg2 \circ alg1)$ **•**••• Move to additional platforms (GPUs first)

Links

You can follow the project on <u>github</u>.
 More detailed explanation <u>here</u> and <u>here</u>.