Parallel evaluation of
general vector-arithmetic
trees

Andras Leitereg - E6tvos Lorand University

Daniel Berényi - Wigner Research Centre for Physics

Quisner

Overview

» Motivation
» Category theory
» Implementation
» Conclusion

The problem

Scientists: Programmers:
field knowledge experience in
and large scale parallel

computational programming
needs and optimization

The solution

Library
for parallel
optimization

Expression
to evaluate

Scientist

Objective

» Focusing on linear algebra applications
»Only CPU threads

» Choose execution strategy (sequential or
parallel) based on cost estimation

Workflow

1. Expression construction
2. Type checking

3. Cost estimation

4

5

. Code generation
. Building and loading evaluator function

Functional approach

» Natural representation of calculations
» Easy to optimize
» Theoretically proven equivalences
» Less room for user errors
» Easy to check correctness
» Describes the intention much better than a |
level representation

O00009

ISHG

O

)

Matrix-vector multiplication

f(m)

(reduce)

Processing passes on arbitrary trees

» Type checking
» Cost estimation
: reduce

» Code generation C)

A

Ay

How to define these abstractly? 4
Xy

Category theory

» Formalizes relations
between algebraic
structures

» Objects and morphisms
(arrows) A

» Identity morphism for
every object

» Morphisms can be
composed associatively

Example with types

/ f: string—int g: int—bool
string @ (bool

\ gef: string—bool

Functor

» Mapping between categories

» Mapping of morphisms c

(fmap) preserves @

> |dentity: f
F(ldA) — ldF(A)

» Composition: > 3
F(g o f) = F(9) ° F(f) fé

Functor example

f

y
fmap(f)
\ector<int> ~(vector<double>

Expression trees

» We represent the operations in an expression t
with types,

» SO we can use results from category theory t
work with the abstract trees.

» We have Scalar, Variable, +, x, Function,
Application, Map, Reduce and Zip nodes.

Recursive tree processing

An arbitrary expression tree can be
evaluated by recursively:

applying the evaluator evaluating the current
function to each child of node using specific logic
the current node through of the represented

an fmap, and operation.

Catamorphism

» A general concept from category theory.
» Formalizes the previous process for arbitra
tree representations and transformations.
» Algebra: the collection of “operation specifi
logics”.
» Carrier type: the type of the transformation
result.
»cata(alg) = alg o fmap (cata alg) o un

Catamorphic transformations

type cost
checking estimation

cata cata

_ type errors

Implementation

» The library is implemented in standard C++.
» We built upon Eric Niebler’s sample F-algebra
implementation

» The type of the expression tree nodes is
expressed with boost: :variant, and the
algebras are boost::static visitor-s.

http://ericniebler.com/2013/07/16/f-algebras-and-c/

Performance testing

Matrix-vector multiplication (16 rows, 107 cols)
5 different execution strategies:
» Sequential
» Parallelizing only one of the map, reduce and
Zip
» Parallelizing all three
Two platforms:
» Laptop with 4 threads and 8GB memory
»HPC cluster with 8 threads and 32GB me

Results

Execution time {seconds)

fully sequential parallel map parallel reduce parallel zip all three parallel

mlaptop mcluster

Conclusion

» The implemented library successfully
demonstrates that the functional approach is
feasible

» Selective parallelization can be faster, than
blindly parallelizing everything

» Easy to select parallelization level

Further plans

» Deduce memory allocations automatically
the expression tree

» Use category theory to optimize e.g.

» Fmap:

fmap(g) o fmap(f) = fmap(g e f)
» Catafusion:
cata(alg?2) o cata(algl) = cata(alg?2 o al

>...

» Move to additional platforms (GPUs first)

Links

» You can follow the project on github.

» More detailed explanation here and here.

https://github.com/leanil/FParLin
http://gpu.wigner.mta.hu/data/uploads/LectureSlides/
https://bartoszmilewski.com/2013/06/10/understanding-f-algebras/

