
Parallel evaluation of 

general vector-arithmetic 

trees

András Leitereg - Eötvös Loránd University

Dániel Berényi - Wigner Research Centre for Physics



Overview

 Motivation

 Category theory

 Implementation

 Conclusion



The problem

Programmers:

experience in 

parallel 

programming 

and optimization

Scientists:

field knowledge 

and large scale 

computational 

needs



The solution

Scientist

Library

for parallel 

optimization

Expression

to evaluate



Objective

Focusing on linear algebra applications

Only CPU threads

Choose execution strategy (sequential or 

parallel) based on cost estimation



Workflow

1. Expression construction

2. Type checking

3. Cost estimation

4. Code generation

5. Building and loading evaluator function



Functional approach

Natural representation of calculations

Easy to optimize

Theoretically proven equivalences

Less room for user errors

Easy to check correctness

Describes the intention much better than a low 

level representation



Map



Zip



Reduce



Matrix-vector multiplication



Processing passes on arbitrary trees

Type checking

Cost estimation

Code generation

How to define these abstractly?



Category theory

 Formalizes relations 

between algebraic 

structures

 Objects and morphisms 

(arrows)

 Identity morphism for 

every object

 Morphisms can be 

composed associatively



Example with types



Functor

 Mapping between categories

 Mapping of morphisms 

(fmap) preserves

 Identity:

𝐹 id𝐴 = id𝐹 𝐴

 Composition:

𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓)



Functor example



Expression trees

We represent the operations in an expression tree 

with types,

 so we can use results from category theory to 

work with the abstract trees.

We have Scalar, Variable, +, ⨯, Function, 

Application, Map, Reduce and Zip nodes.



Recursive tree processing

An arbitrary expression tree can be 

evaluated by recursively:

applying the evaluator 

function to each child of 

the current node through 

an fmap, and

evaluating the current 

node using specific logic 

of the represented 

operation.

The result of the 

evaluation must be the 

same type for any tree.



Catamorphism

A general concept from category theory.

Formalizes the previous process for arbitrary 

tree representations and transformations.

Algebra: the collection of “operation specific 

logics”.

Carrier type: the type of the transformation 

result.

𝑐𝑎𝑡𝑎(𝑎𝑙𝑔) = 𝑎𝑙𝑔 ∘ 𝑓𝑚𝑎𝑝 (𝑐𝑎𝑡𝑎 𝑎𝑙𝑔) ∘ 𝑢𝑛𝑓𝑖𝑥



Catamorphic transformations



Implementation

The library is implemented in standard C++.

We built upon Eric Niebler’s sample F-algebra 

implementation

The type of the expression tree nodes is 
expressed with boost::variant, and the 

algebras are boost::static_visitor-s.

http://ericniebler.com/2013/07/16/f-algebras-and-c/


Performance testing

Matrix-vector multiplication (16 rows, 107 cols)

5 different execution strategies:

Sequential

Parallelizing only one of the map, reduce and 

zip

Parallelizing all three

Two platforms:

Laptop with 4 threads and 8GB memory

HPC cluster with 8 threads and 32GB memory



Results



Conclusion

The implemented library successfully 

demonstrates that the functional approach is 

feasible

Selective parallelization can be faster, than 

blindly parallelizing everything

Easy to select parallelization level



Further plans

Deduce memory allocations automatically from 

the expression tree

Use category theory to optimize e.g.

Fmap: 

𝑓𝑚𝑎𝑝(𝑔) ∘ 𝑓𝑚𝑎𝑝(𝑓) = 𝑓𝑚𝑎𝑝(𝑔 ∘ 𝑓)
Catafusion:

𝑐𝑎𝑡𝑎(𝑎𝑙𝑔2) ∘ 𝑐𝑎𝑡𝑎(𝑎𝑙𝑔1) = 𝑐𝑎𝑡𝑎(𝑎𝑙𝑔2 ∘ 𝑎𝑙𝑔1)
…

Move to additional platforms (GPUs first)



Links

You can follow the project on github.

More detailed explanation here and here.

https://github.com/leanil/FParLin
http://gpu.wigner.mta.hu/data/uploads/LectureSlides/
https://bartoszmilewski.com/2013/06/10/understanding-f-algebras/

