
Parallel evaluation of 

general vector-arithmetic 

trees

András Leitereg - Eötvös Loránd University

Dániel Berényi - Wigner Research Centre for Physics



Overview

 Motivation

 Category theory

 Implementation

 Conclusion



The problem

Programmers:

experience in 

parallel 

programming 

and optimization

Scientists:

field knowledge 

and large scale 

computational 

needs



The solution

Scientist

Library

for parallel 

optimization

Expression

to evaluate



Objective

Focusing on linear algebra applications

Only CPU threads

Choose execution strategy (sequential or 

parallel) based on cost estimation



Workflow

1. Expression construction

2. Type checking

3. Cost estimation

4. Code generation

5. Building and loading evaluator function



Functional approach

Natural representation of calculations

Easy to optimize

Theoretically proven equivalences

Less room for user errors

Easy to check correctness

Describes the intention much better than a low 

level representation



Map



Zip



Reduce



Matrix-vector multiplication



Processing passes on arbitrary trees

Type checking

Cost estimation

Code generation

How to define these abstractly?



Category theory

 Formalizes relations 

between algebraic 

structures

 Objects and morphisms 

(arrows)

 Identity morphism for 

every object

 Morphisms can be 

composed associatively



Example with types



Functor

 Mapping between categories

 Mapping of morphisms 

(fmap) preserves

 Identity:

𝐹 id𝐴 = id𝐹 𝐴

 Composition:

𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓)



Functor example



Expression trees

We represent the operations in an expression tree 

with types,

 so we can use results from category theory to 

work with the abstract trees.

We have Scalar, Variable, +, ⨯, Function, 

Application, Map, Reduce and Zip nodes.



Recursive tree processing

An arbitrary expression tree can be 

evaluated by recursively:

applying the evaluator 

function to each child of 

the current node through 

an fmap, and

evaluating the current 

node using specific logic 

of the represented 

operation.

The result of the 

evaluation must be the 

same type for any tree.



Catamorphism

A general concept from category theory.

Formalizes the previous process for arbitrary 

tree representations and transformations.

Algebra: the collection of “operation specific 

logics”.

Carrier type: the type of the transformation 

result.

𝑐𝑎𝑡𝑎(𝑎𝑙𝑔) = 𝑎𝑙𝑔 ∘ 𝑓𝑚𝑎𝑝 (𝑐𝑎𝑡𝑎 𝑎𝑙𝑔) ∘ 𝑢𝑛𝑓𝑖𝑥



Catamorphic transformations



Implementation

The library is implemented in standard C++.

We built upon Eric Niebler’s sample F-algebra 

implementation

The type of the expression tree nodes is 
expressed with boost::variant, and the 

algebras are boost::static_visitor-s.

http://ericniebler.com/2013/07/16/f-algebras-and-c/


Performance testing

Matrix-vector multiplication (16 rows, 107 cols)

5 different execution strategies:

Sequential

Parallelizing only one of the map, reduce and 

zip

Parallelizing all three

Two platforms:

Laptop with 4 threads and 8GB memory

HPC cluster with 8 threads and 32GB memory



Results



Conclusion

The implemented library successfully 

demonstrates that the functional approach is 

feasible

Selective parallelization can be faster, than 

blindly parallelizing everything

Easy to select parallelization level



Further plans

Deduce memory allocations automatically from 

the expression tree

Use category theory to optimize e.g.

Fmap: 

𝑓𝑚𝑎𝑝(𝑔) ∘ 𝑓𝑚𝑎𝑝(𝑓) = 𝑓𝑚𝑎𝑝(𝑔 ∘ 𝑓)
Catafusion:

𝑐𝑎𝑡𝑎(𝑎𝑙𝑔2) ∘ 𝑐𝑎𝑡𝑎(𝑎𝑙𝑔1) = 𝑐𝑎𝑡𝑎(𝑎𝑙𝑔2 ∘ 𝑎𝑙𝑔1)
…

Move to additional platforms (GPUs first)



Links

You can follow the project on github.

More detailed explanation here and here.

https://github.com/leanil/FParLin
http://gpu.wigner.mta.hu/data/uploads/LectureSlides/
https://bartoszmilewski.com/2013/06/10/understanding-f-algebras/

